

INSTM

Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali

i www.instm.it

Advanced Composite Research in the INSTM Consortium

Prof L. Torre
University of Perugia
Department of Civil an
Environmental Engineering
luigi.torre@unipg.it

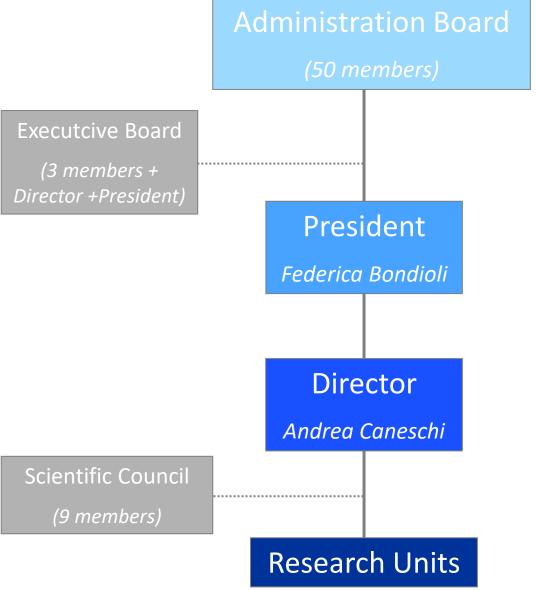
INSTM, a consortium for material science and technology

About INSTM

INSTM:

- ≡ groups all the Italian Universities (52)
 where research on Materials is carried out
- ≡ has about 3000 scientists affiliated
- ≡ integrates a "critical mass" of knowledge

What INSTM aims to a c h i e v e


INSTM:

- ≡ promotes and supports the research on Materials Science and Technology
- ≡ develops and improves exchanges between Universities and Industries
- ≡ supports technological transfer, spin-off activities and training for enterprises
- ≡ promotes the public understanding of Materials Science and Technology



INSTM structure

INSTM scientific n e t w o r k

INSTM SCIENTIFIC SECTIONS:

- 1. Materials and technologies for life and food sciences
- 2. Materials and technologies for Made in Italy, advanced manufacturing and aerospace
- 3. Materials and technologies for ecological transition: Energy and Sustainable Mobility.
- 4. Materials and technologies for green economy and circular economy
- 5. Materials and technologies for buildings and cultural heritage

INSTM AD HOC COMMITTEE:

Computational calculus

INSTM Research C e n t r e s

1. Technologies for the transformation of polymer and composite materials

Coordinator: Prof. G. Mensitieri, Federico II University, Naples

2. Surfaces and nanostructured interphases

Coordinator: Prof. S. Bordiga, University of Turin

3. CRIMSON - Reference Centre for the modelling and simulation of molecular organisations and nanosystems Coordinator: Prof. C. Zannoni, University of Bologna

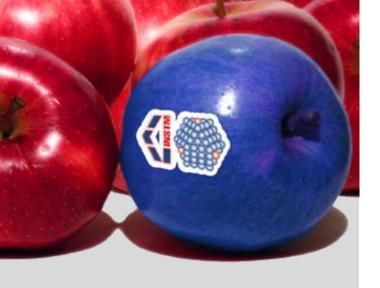
4. Bioactive polymeric materials for biomedical and environmental applicationsCoordinator: Prof. D. Puppi, University of Pisa

5. Research centre of nanosized materials for microelectronic and related applicationsCoordinator: Prof. M.E. Fragalà, University of Catania

6. LINCE - Laboratory of technology and engineering of ceramic materials

Coordinator: Prof. L. Montanaro, Polytechnic of Turin

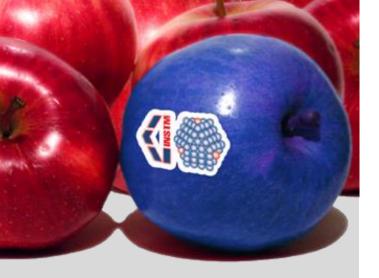
7. Reference Centre for controlled porosity materials Coordinator: Prof. P. Innocenzi, University of Sassari


INSTM Research C e n t r e s

- 8. NIPLAB Laboratory of nanocomposites and multifunctional polymeric hybrid materials
 Coordinator: Prof. J. M. Kenny, University of Perugia
- **9. LAMM Laboratory for molecular magnetism** Coordinator: Prof. R. Sessoli, University of Florence
- 10. CASPE Laboratory of catalysts for sustainable production and energy Coordinator: Prof. S. Perathoner, University of Messina
- **11. Semi-crystalline polymeric materials**Coordinator: Prof. G. Guerra, University of Salerno
- 12. LASCAMM Laboratory of synthesis and characterization of organometallic-based molecular materials

 Coordinator: Prof. I. Aiello, University of Calabria
- 13. SKIES-VILLAGE Science, Knowledge and Innovation for Earth and Space in a Virtual Italian Laboratory for Large Scale Applications in a Geographically-distributed Environment

Coordinatore: Prof. V. Barone, Scuola Normale di Pisa


INSTM Research C e n t r e s **14. LITS - Laboratory of surface treatments engineering** Coordinator: Prof. T. Valente, La Sapienza University, Rome

15. PREMIO - Centre for the preparation of innovative materials with optimised chemical-physical properties Coordinator: Prof. L. Malavasi, University of Pavia

16. GISEL - National Centre of Reference for Electrochemical Energy Storage Systems

Coordinator: Prof. C. Gerbaldi, Turin Polytechnic

INSTM in H2020 - 1

H2020 projects (INSTM Partner)

AGRIMAX	Agri and food waste valorisation co-ops based on flexible multi- feedstocks biorefinery processing technologies for new high added value applications	H2020-BBI-PPP-2015-2-1
A-LEAF	An Artificial Leaf: a photo-electro-catalytic cell from earth-abundant materials for sustainable solar production of CO ₂ -based chemicals and fuels	H2020-FETPROACT-2016- 2017
ENHANCE	Piezoelectric Energy Harvesters for Self-Powered Automotive Sensors: from Advanced Lead - Free Materials to Smart Systems	H2020-MSCA-ITN-2016
PERFORM	PowerPlatform: Establishment of platform infrastructure for highly selective electrochemical conversions	H2020 Innovation Action
нис	Development and validation of a powder HIP route for high temperature Astroloy to manufacture Ultrafan® IP Turbine Casings	H2020 Clean Sky2 Innovation action
BIOnTop	Novel packaging films and textiles with tailored end of life and performance based on bio-based copolymers and coatings	H2020-BBI-JTI-2018
SUN2CHEM	Novel photo-assisted systems for direct Solar-driven redUctioN of ${ m CO_2}$ to energy rich CHEMicals	H2020-LC-SC3-2019-NZE- RES-CC
DECADE	DistributEd Chemicals And fuels production from CO ₂ in photoelectrocatalytic Devices	H2020-NMBP-ST-IND- 2018-2020
ERN-APULIA3	European Researchers' Night Apulia 2021 - Discovering the fascinating world of research	H2020 Coordination and support action

International Cooperation projects (INSTM Partner)

sumo	UMO Scaling Up Quantum Computation with Molecular spins		QUANTERA	-
NEXT-LiB	Novel Circular Economic Approaches for Efficient Extraction of Valuables from Spend Li-ion Batteries	ERA-MIN	2 Reg, Calabria	ı

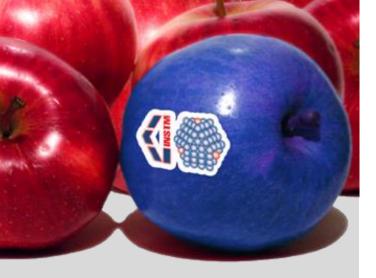
INSTM in H2020 - 2

H2020 projects (INSTM Coordinator)

NEWTEAM	Next generation low pressure turbine airfoils by am	H2020 Clean Sky2 Innovation action
ECOFUNCO	ECOFUNCO Eco sustainable multifunctional biobased coatings with enhanced performance and end of life options	
COST ACTION CA 18130	European Network for Chemical Elemental Analysis by Total Reflection X-Ray Fluorescence	COST Open Call Proposal Reference OC-2018-1- 22966
COST ACTION CA 20101	Plastics monitoRIng detectiOn RemediaTion recoverY	COST Open Call Proposal Reference OC-2021
ERN-APULIA2	European Researchers' Night Apulia 2020 - Discovering the fascinating world of research	H2020 Coordination and support action
POLYBIOSKIN	High performance functional bio-based polymers for skin- contact products in biomedical, cosmetic and sanitary industry	H2020-BBI-JTI-2016

International Cooperation projects (INSTM Coordinator)

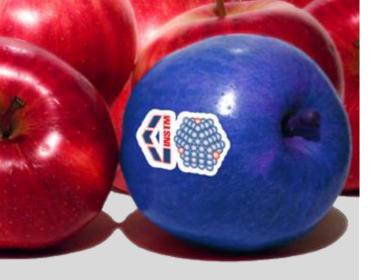
4NanoEARDRM	NANOfabricated NANOcomposite NANObioactive and NANOfunctional rEplacements of tympAnic membRane as advanced DRUg delivery and regenerative platforMs	EuroNanoMed III JTC2017 - MIUR	
NON-ACT	NOvel Natural Antimicrobial CoaTing for food production chain	Manunet III - Regione Toscana	



INSTM in Horizon E u r o p e

Horizon Europe projects (INSTM Partner)

BEST	Batteries Europe Secretariat	Horizon Europe Coordination and support action
MIRIA	Development of antimicrobial, antiviral, and antifungal nanocoatings for everyday surfaces	Horizon Europe Research and Innovation Action



INSTM is member of Technology Clusters

INSTM is member of:

- ≡ Italian Cluster of Circular Bioeconomy SPRING
- **≡ Lombardy Energy Cleantech Cluster (LE2C)**
- National Technological Cluster "Made in Italy" (MinIT)
- **Associazione Fabbrica Intelligente Lombardia (AFIL)**
- National Cluster "Fabbrica Intelligente" (CFI)
- ≡ Italian Association for Industrial Research (AIRI)
- **Batteries European Partnership Association (BEPA)**
- **≡** Bio-based Industry Consortium (BIC)

INSTM Italian and international partners

Collaboration agreements has been signed between INSTM and:

- Techint Compagnia Tecnica Internazionale SpA
- CNR
- ACEA SpA
- Eni SpA
- MATERIAS Srl
- Rete AIRES
- Nuovo Pignone Tecnologie Srl
- Fondazione Istituto Italiano di Tecnologia (IIT)
- Sincrotrone Trieste SCpA
- Laboratori Nazionali di Legnaro dell'INFN
- Parco Scientifico Tecnologico per l'Ambiente Environment Park Torino SpA
- ECO GV Energy Srl
- Assobiomedica
- Rivista Open Access Polymers
- Kyoto Institute of Technology (KIT)
- CVR Srl
- LMPE Srl
- PA.SE Srl
- Iterchimica Srl

INSTM contact p o i n t s

President

Federica Bondioli

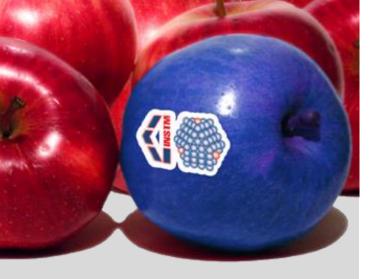
Department of Applied Science and Technology (DISAT), Polytechnic of Turin E-mail: federica.bondioli@polito.it

Director

Andrea Caneschi

Department of Industrial Engineering (DIEF), University of Florence

E-mail: andrea.caneschi@unifi.it

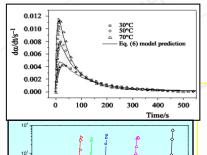

Secretariat

Claudia Bettaccini

INSTM Consortium, Via Giusti, 9 50121 Florence (Italy) Tel. +39 055 233871

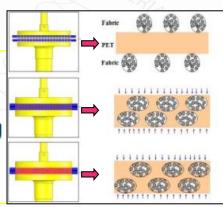
E-mail: cbetta@instm.it

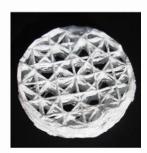
ADVANCED COMPOSITES AT INSTM



Università del Salento – Dept. of Engineering for Innovation

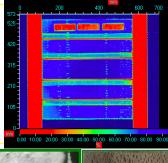
Director: Prof Alfonso Maffezzoli alfonso.maffezzoli@unisalento.it

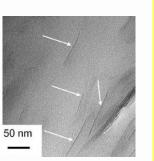



➤ Thermosetting matrix composites

Monitoring and modeling of the curing process

- Optimization and modeling of the consolidation.
- US and induction Welding




>3D printing

Development of new compounds and production of prototypes

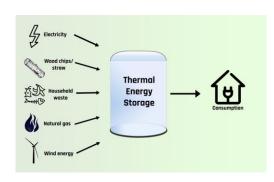
Composite Processing Optimization and modeling of the production process

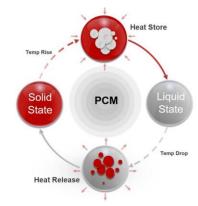
Nanocomposites grafene and clay based

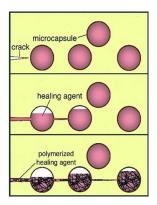
Synthesis, morphological and physico-mechanical characterization of nanocomposites

Natural basedComposites and recycling

- Matrices and fibers of natural origin
- Fibers and matrix recycling




Research lines of the UniTrento's Polymers & Composites Laboratory



People

- 1 full professor (A. Pegoretti)
- 2 associate professors (L. Fambri and A. Dorigato)
- 1 Junior assistant professor (RTDa) (G. Fredi)
- 3 post-docs
- 7 PhD students
- 2 postgraduate researchers
- about 20 master's and bachelor's students

Main research lines:

- Recycling of polymeric and composite materials
- Life cycle assessment of materials and industrial products
- Bioderived and biodegradable polymers
- Self sensing/self healing structural composites
- Multifunctional 3D printed materials
- Materials for thermal energy storage (TES) and thermal management

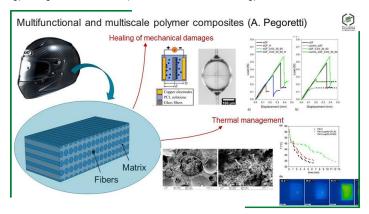
Polymers and Composites

Who

Expertise

Alessandro Pegoretti Load-bearing composites

Self-healing


Energy storage

Relevant publications

1. Karger-Kocsis J, Mahmood H, Pegoretti A. All-carbon hierarchical fibers and related polymer composites: a review. Composites Science and Technology. 2020; 186: Article 107932.

Simonini L, Mahmood H, Dorigato A, Pegoretti A. Evaluation of self-healing capability of a
polycaprolactone interphase in epoxy/glass composites. Composites Part A. 2023; 169 107539.
 Fredi G, Dorigato A, Fambri L, Pegoretti A. Multifunctional structural composites for thermal energy
storage. Multifunctional Materials. 2020; 3(4), 042001.

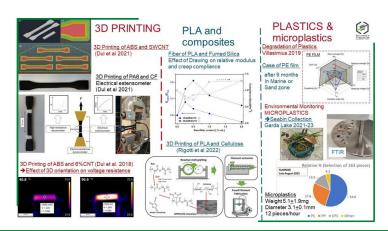
4. Fredi G, Dorigato A, Fambri L, Pegoretti A. Multifunctional epoxy/carbon fiber laminates for thermal energy storage and release. Composites Science and Technology. 2018; 158: 101-111.

Who Expertise

Luca Fambri Additive manufacturing

PLA composites

Microplastics


Relevant publications

1. Fambri L., Dorigato A., Pegoretti A. Role of surface-treated silica nanoparticles on the thermomechanical behavior of poly(Lactide). Appl. Sci., 2020, 10; 1-20

 Dul S., Ecco L. G., Pegoretti A., Fambri L. Graphene/carbon nanotube hybrid nanocomposites: Effect of compression molding and fused filament fabrication on properties. Polymers, 2020, 12; Article 101

3. Residori S., Dul S., Pegoretti A., Fambri L., Pugno N.M.Three Dimensional Printing of Multiscale Carbon Fiber-Reinforced Polymer Composites Containing Graphene or Carbon Nanotubes. Nanomaterials, 2022, 22(12), Article 2064.

4. Dul S., Gutierrez B.J.A., Pegoretti A., Alvarez-Quintana J., Fambri L. 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. J.Mater.Sci.Techn., 2022, 21; 52-66.

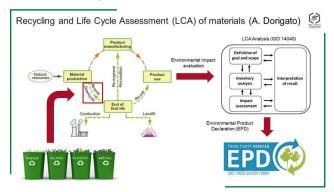
Polymers and Composites

Who

Andrea Dorigato

Expertise

Recycling

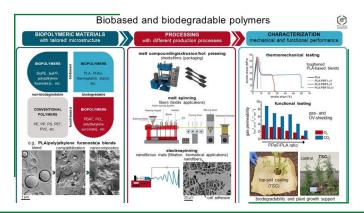

LCA

Environmental impact

Relevant publications

1. Dorigato A. Recycling of thermosetting composites for wind blade application. Advanced Industrial and Engineering Polymer Research. 2021;4:116–32.

- 2. Valentini F, Dorigato A, Rigotti D, Pegoretti A. Evaluation of the role of devulcanized rubber on the thermomechanical properties of Ethylene-Propylene Diene Monomers (EPDM) foams. Polymer Engineering and Science. 2021;61:767–79.
- 3. Siracusa S, Quartinello F, Soccio M, Manfroni M, Lotti N, Dorigato A, et al. On the selective enzymatic recycling of poly(pentamethylene 2,5-furanoate)/poly(lactic acid) blends and multiblock copolymer. ACS Sustainable Chemistry & Engineering. 2023;11:9751-60.
- 4. Valentini F, Dorigato A. Evaluation of the environmental impact of a plastic sprayer through life cycle assessment: an industrial case study. International Journal of Environmental Science and Technology, in Press.


Who Expertise

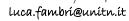
Giulia Fredi Biopolymers

Furanoate polyesters
Sustainable packaging

Relevant publications

- Fredi, G.; Dorigato, A., Recycling of bioplastic waste: a review. Advanced Industrial and Engineering Polymer Research 2021, 4 (3), 159–177.
- Rigotti, D.; Soccio, M.; Dorigato, A.; Gazzano, M.; Siracusa, V.; Fredi, G.; Lotti, N., Novel biobased polylactic acid/poly(pentamethylene 2,5-furanoate) blends for sustainable food packaging. ACS Sustainable Chemistry and Engineering 2021, 9 (41), 13742–13750.
- Fredi, G.; Zonta, E.; Dussin, A.; Bikiaris, D. N.; Papageorgiou, G. Z.; Fambri, L.; Dorigato, A., Toughening effect of 2,5-furandicaboxylate polyesters on polylactide-based renewable fibers. Molecules 2023. 28. 4811.
- Santi, S.; Soccio, M.; Fredi, G.; Lotti, N.; Dorigato, A., Uncharted development of electrospun mats based on bioderived poly(butylene 2,5-furanoate) and poly(pentamethylene 2,5-furanoate). Polymer 2023, 279, 126021.

Polymers & Composites Laboratory



Prof. Alessandro Pegorettí

Prof. Luca Fambrí Full professor Associate professor

alessandro.pegoretti@unitn.it

Prof. Andrea Dorigato

andrea.dorígato@unitn.it

Dr. Giulia Fredi

Associate profesgorAssistant professor

giulia.fredi@unitn.it

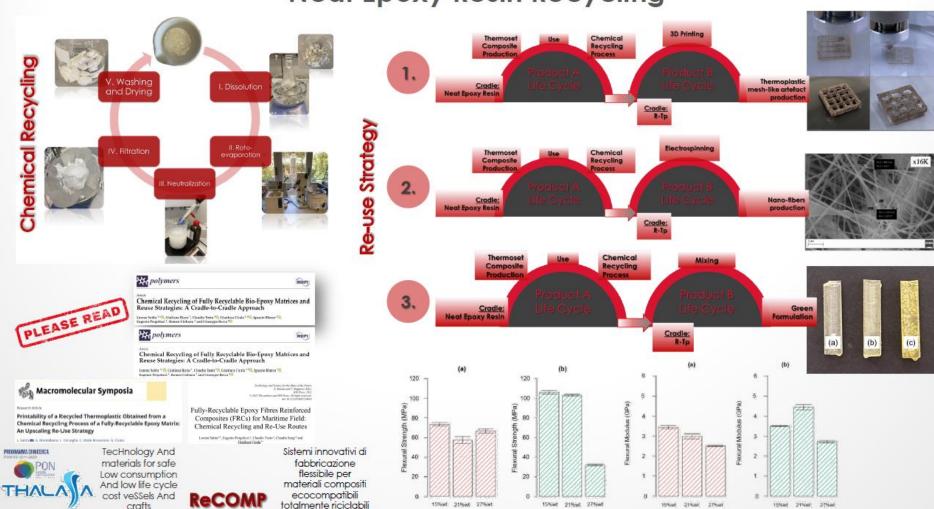
polymers-composites-unitn

polymerscomposites_unitn

Composite Material Laboratory

Director Prof Gianluca Cicala gianluca.cicala@unict.it

AM for Composites Tooling


Approaches

Folymeric AM for composite's tooling

Neat Epoxy Resin Recycling

Recyclable Fiber-Reinforced Composites

cost vessels And

ReCOMP

ecocompatibili

totalmente riciclabili

Study of Epoxy recycling

Hybrid Biobased Recyclable Epoxy Composites for Mass Production

G. Cicala O, S. Mannino, A.D. La Rosa, D.R. Banatao, S.J. Pastine, S.T. Kosinski, F. Scarpa University of Catania, DiCAR, Viale Andrea Daria 6, 95125 Catania, Italy

POLYMER COMPOSITES-2017

Polymer Composites and Biocomposites Group

University of Palermo, Department of Engineering

STAFF

Roberto Scaffaro Antonino Valenza

Luigi Botta Nadka Dintcheva Vincenzo Fiore Bartolo Megna Maria Chiara Mistretta Manuela Ceraulo Emmanuel F. Gulino Andrea Maio Michele Gammino Giulia Infurna Riccardo Miranda Carmelo Sanfilippo Marta Balsamo Maria Clara Citarrella Erika Di Liberto Marco Luciano

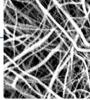
Vincenzo Titone

- MATRIX: Thermoplastics, thermosets
- FILLER: nano/microparticles, biomass waste valorization (animal, vegetal)

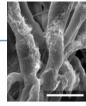
Materials

Processing

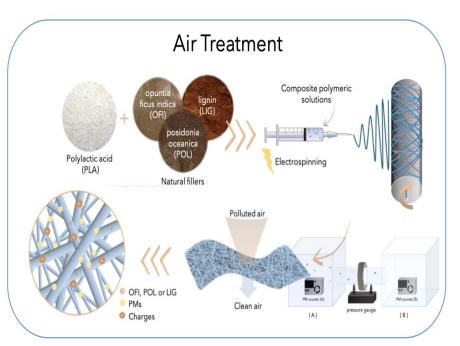
- MELT: Extrusion, batch mixing, FDM, compression molding, injection molding, film blowing
- SOLUTION: Solvent casting, (wet)electrospinning, solution blow spinning


Structure

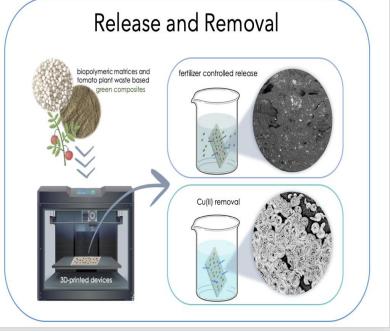
Laminates, filler inclusion, core-shell composites, etc.

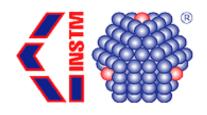

Dense or porous 1D, 2D, 3D structures

Hierarchical/graded structures



Results and applications







Materials Science and Technology Group

University of Perugia (Terni – ITALY)
Civil and Environmental Engineering Department
Luigi.torre@unipg.it

The Materials Science and Technology group is very active in European research programmes.

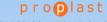
The Group is also founder of the ECNP, (European Centre for Nanotechnology of Polymers)

The Group has close collaboration with PUMAS and performs research for many companies and research centres in Italy and abroad.

LyondellBasell Polymers »

MATERIALS DESIGN & PROCESSING

Samsonite



EPS-EPP Global Solutions

Processing of Fiber Reinforced Composites

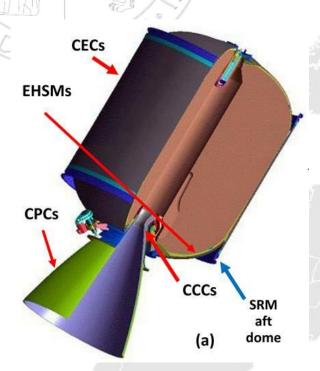
At UNIPG

- Hand Lay Up; Compression Molding;
- Liquid Moulding: RTM, VARTM, L-RTM;
- Vacuum infusion;

Special molds and manufacturing technologies

The STM SPACE group

	Project Title	Funding source	Period
1 (Cost effective enabling MatErials and Technologies for Access to Space (COMETAS)	Horizon 2020, ERA-NET Cofund On Advanced Manufacturing Technologies, MANUNET III	2018 - 2020
	VEGA Generation E	VEGA Generation E PON Research and Innovation 2014 - 2020 E FSC	
	development of Innovative Testing of High tempERature MAterials for soLid rocket motors (ITHERMAL)	POR FESR 2014-2020, Sardinia Region, Aerospace	2019 - 2020
4	HYbrid ROcket technology for quicK and dedicated accesS to Space (HYROKSS)	National Plan for Military Research (PNRM), Italian Ministry of Defense	2019 - 2021



* HEXION*

Material for Solid Rocket Motors

- 1) Structural materials: Carbon/Epoxy Composites (CECs).
- 2) Thermal Protection System (TPS) materials: Elastomeric Heat Shielding Materials (EHSMs), Carbon/Carbon Composites (CCCs), Carbon/Phenolic Composites (CPCs), Ultra High Temperature Ceramics (UHTCs).

Refractory Metal Throats

Tungsten throat reinforced with tungsten

Tungsten is the material of choice when solid rocket propellant flame temperatures exceed the melting point of rhenium. Because tungsten can be used to coat a lighter weight material such as graphite or carbon/carbon, the cost and weight of a monolithic tungsten throat are avoided. With its proficiency in chemical vapor deposition, Ultramet can manufacture tungsten throats as coated parts or freestanding inserts.

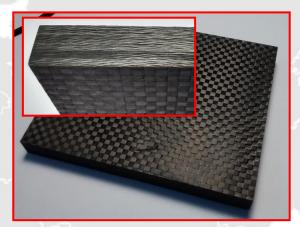
Ceramic-lined Throats

Next-generation solid rocket propellants will have flame temperatures above the melting point of tungsten, so high temperature ceramics will be required. Ultramet can meet this demand with fiber-reinforced ceramic throats, ceramic-coated carbon/carbon throats, and/or hybrids of the two. Ultramet ceramic composites and coatings can also be used to prevent erosion in the exhaust nozzle.

TaC 7208°F (3987°C)* HfC 7136°F (3947°C)*

*D.T. Vier, Thermal and Other Properties of Refractories, Technical Report Program R056, Los Alamos Scientific

Elastomeric Heat Shielding Materials (EHSMs) are used to protect the Solid Rocket Motor (SRM) case against the high temperatures developed during the combustion process. The state of the art material for insulate SRMs is based on EPDM reinforced with Aramid fibers or pulp (Twaron® or Kevlar®).

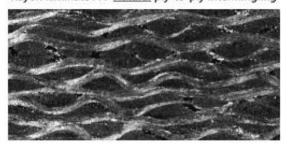

State of the art of Carbon/Phenolic Composites (CPCs)

Carbon/Phenolic (~1.5 g/cm³)

Galileo mission

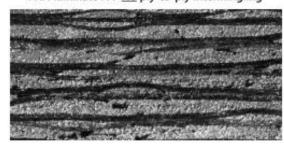
PICA (~0.3/0.4 g/cm³)

Stardust mission and SpaceX
Dragon capsule



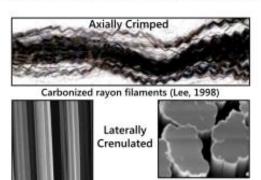
Traditional Carbon/Phenolic Composites (CPCs)

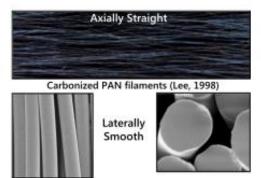
From ex-Rayon to ex-PAN based carbon/phenolic composites


Fiber shape morphology plays a direct role in ply-to-ply fiber intermingling and interlaminar nesting which influences z-directional properties by reducing Mode II and Mode I weaknesses.

Rayon laminate . . . Natural ply-to-ply intermingling

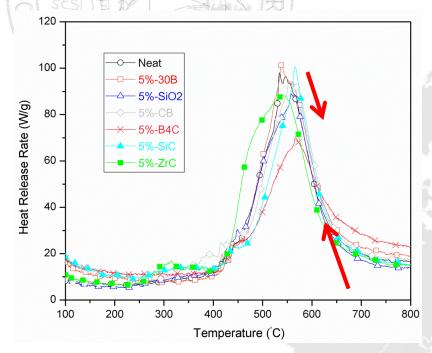
PAN laminate . . . No ply-to-ply intermingling

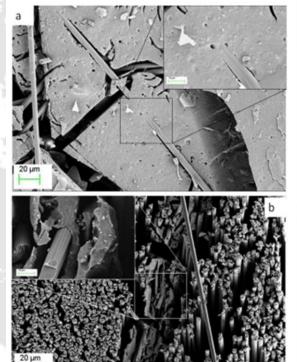


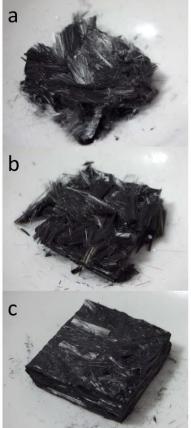

Side view of carbonized rayon / phenolic matrix substrate (Lee, 1986)

Side view of carbonized PAN / phenolic matrix substrate (Lee, 1986)

It is apparent which configuration possesses greater interlaminar interactions


Longitudinal and lateral features specific to the fibers/fabrics employed are key factors in mechanical bonding, interlocking and slippage effects along fiber-matrix interfaces as they facilitate 'slip-and-grip' toughness actions during expansion and contraction. Current state-of-the art PAN fibers are smooth, straight, non-interacting structures that exhibit minimal interlocking.




Nanostructured high char yield phenolics for CPCs

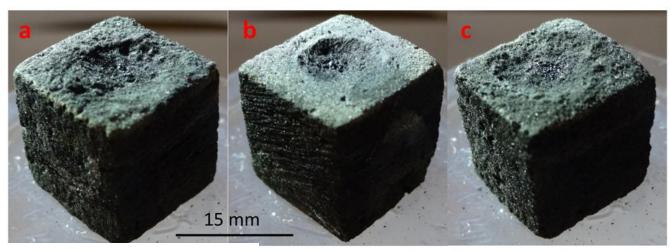
Testing of carbon/phenolic composites with improved oxidation resistance and residual structural integrity based on B₄C;

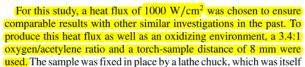
A nanostructured Phenolic Impregnated Carbon Ablator

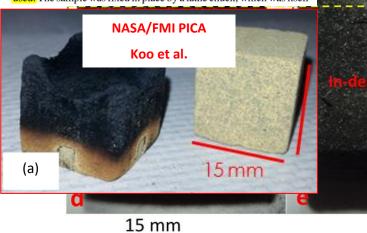
A A nanostructured version of PICA (N-PICA) was produced using an ex-PAN carbon fiber. A nanoclay and Multi Walled Carbon Nanotubes (MWCNTs) were selected as nanophases to control the erosion resistance. A phenolic matrix was used to impregnate the fiber network.

A reliable, scalable, vacuum-driven, processing technique, was identified and applied.

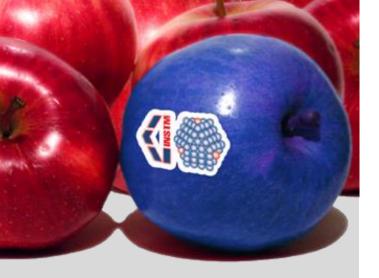
Formulatio n	Nanoclay/MWCNT ratio	Density (g/cm³)
PICA 1	1/1	0.36 ± 0.01
PICA 2	2/1	0.47 ± 0.01
PICA 3	1/2	0.29 ± 0.01




The final densities of the nanostructured formulations were in line with the values of the PICA available in literature.


However, since US PICAs are considered subjected to International Traffic in Arms Regulations (ITAR) by the US, many metrics are not available in literature.

Oxy-Acetylene Torch (OAT) test



	小				
depth charring					
	ľ	Formulatio	on	//MWCNT tio	

Formulation	Nanoclay/MWCNT ratio	Density (g/cm³)
PICA 1	1/1	0.36 ± 0.01
PICA 2	2/1	0.47 ± 0.01
PICA 3	1/2	0.29 ± 0.01

THANK YOU FOR YOUR ATTENCION

i www.instm.it

